Rapid Imaging of Microstructure using Spatially Resolved Acoustic Spectroscopy
نویسندگان
چکیده
Microstructure can have profound effects on the bulk mechanical properties of a material, such as its strength and susceptibility to failure under stress. Several well known methods for imaging microstructure exist, including essentially destructive techniques such as etching and electron back-scattered diffraction, and contact techniques such as the scanning acoustic microscope. SRAS – spatially resolved acoustic spectroscopy – is a relatively new laser ultrasound technique that uses surface acoustic wave velocity as its contrast mechanism. Unlike the techniques above it is non-contact, non-destructive, can be used to image large samples, and provides quantitative velocity information for acoustic waves propagating in one or more directions. The technique uses the relative efficiency with which waves of either a fixed frequency or k-vector are excited by a grating to obtain the velocity, unlike most laser ultrasound techniques which rely on direct phase or time of flight measurements. This makes SRAS very tolerant to acoustic aberrations and poor signal to noise ratios, and hence is a robust technique. Lateral resolutions of the order of 25μm, and velocity resolutions better than 1m/s are illustrated by striking images of microstructure from industrially relevant materials.
منابع مشابه
Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy
Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneousl...
متن کاملSpatially Resolved Raman Spectroscopy of Carbon Electrode Surfaces: Observations of Structural and Chemical Heterogeneity
Raman spectroscopy and Raman imaging were used to examine several types of carbon electrode materials, including glassy carbon (GC) and highly ordered pyrolytic graphite (HOPG). Variations in the intensity ratio of the D and E2g Raman bands across the carbon surface indicated varying carbon microstructure. The D/E2g ratio for polished GC and pyrolytic graphite edge (PG) was relatively constant,...
متن کاملModeling Time Resolved Light Propagation Inside a Realistic Human Head Model
Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue.Method: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. ...
متن کاملRapid mapping of polarization switching through complete information acquisition
Polarization switching in ferroelectric and multiferroic materials underpins a broad range of current and emergent applications, ranging from random access memories to field-effect transistors, and tunnelling devices. Switching in these materials is exquisitely sensitive to local defects and microstructure on the nanometre scale, necessitating spatially resolved high-resolution studies of these...
متن کاملDistortion correction and cross-talk compensation algorithm for use with an imaging spectrometer based spatially resolved diffuse reflectance system.
Optical spectroscopy of human tissue has been widely applied within the field of biomedical optics to allow rapid, in vivo characterization and analysis of the tissue. When designing an instrument of this type, an imaging spectrometer is often employed to allow for simultaneous analysis of distinct signals. This is especially important when performing spatially resolved diffuse reflectance spec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008